Polarity mediates asymmetric trafficking of the Gbeta heterotrimeric G-protein subunit GPB-1 in C. elegans embryos.
نویسندگان
چکیده
Asymmetric cell division is an evolutionarily conserved process that gives rise to daughter cells with different fates. In one-cell stage C. elegans embryos, this process is accompanied by asymmetric spindle positioning, which is regulated by anterior-posterior (A-P) polarity cues and driven by force generators located at the cell membrane. These force generators comprise two Gα proteins, the coiled-coil protein LIN-5 and the GoLoco protein GPR-1/2. The distribution of GPR-1/2 at the cell membrane is asymmetric during mitosis, with more protein present on the posterior side, an asymmetry that is thought to be crucial for asymmetric spindle positioning. The mechanisms by which the distribution of components such as GPR-1/2 is regulated in time and space are incompletely understood. Here, we report that the distribution of the Gβ subunit GPB-1, a negative regulator of force generators, varies across the cell cycle, with levels at the cell membrane being lowest during mitosis. Furthermore, we uncover that GPB-1 trafficks through the endosomal network in a dynamin- and RAB-5-dependent manner, which is most apparent during mitosis. We find that GPB-1 trafficking is more pronounced on the anterior side and that this asymmetry is regulated by A-P polarity cues. In addition, we demonstrate that GPB-1 depletion results in the loss of GPR-1/2 asymmetry during mitosis. Overall, our results lead us to propose that modulation of Gβ trafficking plays a crucial role during the asymmetric division of one-cell stage C. elegans embryos.
منابع مشابه
RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos
Heterotrimeric G proteins are crucial for asymmetric cell division, but the mechanisms of signal activation remain poorly understood. Here, we establish that the evolutionarily conserved protein RIC-8 is required for proper asymmetric division of one-cell stage C. elegans embryos. Spindle severing experiments demonstrate that RIC-8 is required for generation of substantial pulling forces on ast...
متن کاملG Proteins Are Required for Spatial Orientation of Early Cell Cleavages in C. elegans Embryos
Heterotrimeric G proteins are signal-transducing molecules activated by seven transmembrane domain receptors. In C. elegans, gpb-1 encodes the sole Gbeta subunit; therefore, its inactivation should affect all heterotrimeric G protein signaling. When maternal but no zygotic gpb-1 protein (GPB-1) is present, development proceeds until the first larval stage, but these larvae show little muscle ac...
متن کاملAsymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo
BACKGROUND Spindle positioning during an asymmetric cell division is of fundamental importance to ensure correct size of daughter cells and segregation of determinants. In the C. elegans embryo, the first spindle is asymmetrically positioned, and this asymmetry is controlled redundantly by two heterotrimeric Galpha subunits, GOA-1 and GPA-16. The Galpha subunits act downstream of the PAR polari...
متن کاملDistinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein.
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolatio...
متن کاملSPD-3 is required for spindle alignment in Caenorhabditis elegans embryos and localizes to mitochondria.
During the development of multicellular organisms, cellular diversity is often achieved through asymmetric cell divisions that produce two daughter cells having different developmental potentials. Prior to an asymmetric cell division, cellular components segregate to opposite ends of the cell defining an axis of polarity. The mitotic spindle rotationally aligns along this axis of polarity, ther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 138 13 شماره
صفحات -
تاریخ انتشار 2011